Notes
Core Building Blocks
1. Foundation Models (Brain)
Implementation Considerations:
- Choose base LLMs for general text understanding and generation
- Add specialized models for specific tasks (code, images, etc.)
- Implement function calling for tool/API interactions
- Balance model capabilities vs. resource usage
2. Memory Architecture
Implementation Tips:
- Use conversation buffers for short-term context
- Implement vector databases (like Pinecone) for efficient retrieval
- Design clear memory retention/cleanup policies
- Structure data for quick access and updates
3. Function Calling System
Key Components:
# Example Function Schema
functions = [{
"name": "search_database",
"description": "Search for records in database",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string"},
"filters": {"type": "object"}
}
}
}]
# Example Implementation
async def process_user_input(user_input: str):
# 1. LLM Analysis
function_call = await llm.analyze_input(user_input, functions)
# 2. Function Execution
if function_call:
result = await execute_function(
function_call.name,
function_call.parameters
)
# 3. Response Generation
response = await llm.generate_response(result)
return response
4. Tool Integration
Implementation Pattern:
class ToolManager:
def __init__(self):
self.tools = {}
def register_tool(self, name: str, tool: callable):
"""Register a new tool with validation"""
self.tools[name] = tool
async def execute_tool(self, name: str, params: dict):
"""Execute tool with error handling"""
try:
tool = self.tools.get(name)
return await tool(**params)
except Exception as e:
logger.error(f"Tool execution failed: {e}")
return {"error": str(e)}
Best Practices
1. Error Handling
try:
result = await agent.execute_task(task)
except AgentError as e:
logger.error(f"Agent error: {e}")
fallback_result = await fallback_handler.handle(e)
2. Monitoring
class AgentMonitor:
def log_execution(self, task_id: str, metrics: dict):
"""Log execution metrics"""
prometheus.push_metrics(task_id, metrics)
def track_performance(self, agent_id: str):
"""Track agent performance"""
return prometheus.query_metrics(agent_id)
3. Testing
class AgentTest:
async def test_function_calling(self):
"""Test function calling accuracy"""
test_inputs = load_test_cases()
for input in test_inputs:
result = await agent.process(input)
assert validate_output(result, input.expected)
Common Patterns
1. ReAct Pattern (Reasoning + Action)
async def react_loop(task: str):
while not task.completed:
# Reason about the task
reasoning = await llm.reason_about(task)
# Decide on action
action = await llm.decide_action(reasoning)
# Execute action
result = await execute_action(action)
# Observe results
task = await update_task(result)
2. Chain of Thought
async def chain_of_thought(problem: str):
# Break down problem
steps = await llm.break_down_problem(problem)
# Process each step
for step in steps:
result = await process_step(step)
context.update(result)
return context.final_result